Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 339: 139583, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480955

RESUMO

A solvothermal method was used to synthesize the mesoporous TiO2, (1-3w %) Cu-doped mesoporous TiO2 membrane with the help of a bioreactor. To understand the physicochemical composition of all synthesized nanomaterials, the structure, morphology and crystallinity of the materials were studied using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform-infrared (FTIR), Energy dispersive X-ray spectroscopy (EDS) and cyclic voltammetry (CV). Under artificial light source (500 W mercury bulb) irradiations, the nano catalysts' catalytic effectiveness was examined for the azo dyes, namely Congo red. Cu-doping causes a shift in the light absorption of mTiO2 from the ultraviolet to the visible region. The 3w% Cu-doped mTiO2 photocatalyst exhibits lower band gap energy (2.6eV) than TiO2 which is 3.2 eV to efficiently utilize solar energy. As a result, the light absorption was shifted towards the visible spectrum. The recommended mTiO2 and (1, 2, 3) w% Cu-doped mTiO2 photocatalysts were used to photodegrade Congo red and methylene blue. For the degradation of CR, the mTiO2 photocatalyst exhibited 61% and 3w% Cu-doped mTiO2 demonstrated 99% photocatalytic performance after 50 min. A variety of scavengers were also utilized to distinguish the active species by catching the radicals and holes created during the process of photocatalytic degradation. CV indicates the presence of Cu2+ and Cu1+ in Cu-doped mTiO2. Oxygen vacancies and the electronegative surface of Cu1+ seem to perform the photocatalytic reduction of CR.


Assuntos
Vermelho Congo , Luz , Titânio/química , Corantes , Catálise
2.
Molecules ; 28(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37110553

RESUMO

Lithium-ion batteries (LIBs) have been explored to meet the current energy demands; however, the development of satisfactory anode materials is a bottleneck for the enhancement of the electrochemical performance of LIBs. Molybdenum trioxide (MoO3) is a promising anode material for lithium-ion batteries due to its high theoretical capacity of 1117 mAhg-1 along with low toxicity and cost; however, it suffers from low conductivity and volume expansion, which limits its implementation as the anode. These problems can be overcome by adopting several strategies such as carbon nanomaterial incorporation and polyaniline (PANI) coating. Co-precipitation method was used to synthesize α-MoO3, and multi-walled CNTs (MWCNTs) were introduced into the active material. Moreover, these materials were uniformly coated with PANI using in situ chemical polymerization. The electrochemical performance was evaluated by galvanostatic charge/discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis revealed the presence of orthorhombic crystal phase in all the synthesized samples. MWCNTs enhanced the conductivity of the active material, reduced volume changes and increased contact area. MoO3-(CNT)12% exhibited high discharge capacities of 1382 mAhg-1 and 961 mAhg-1 at current densities of 50 mAg-1 and 100 mAg-1, respectively. Moreover, PANI coating enhanced cyclic stability, prevented side reactions and increased electronic/ionic transport. The good capacities due to MWCNTS and the good cyclic stability due to PANI make these materials appropriate for application as the anode in LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...